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Abstract 

A new model of the transient internal damping (ID) associated with the emission and movements of dislocations 
around particles in metal matrix composites (MMCs) is developed. These movements on which the proposed 
model is based are mainly induced during thermal cycles by the internal stress field around particles, which 
results from the thermal expansion mismatch between particles and matrix. First, from this thermally induced 
internal stress field, calculated by the Eshelby method, and the critical shear stress opposing the motion of 
dislocations in their glide plane in the matrix, the number and positions of punched-out dislocations are determined 
as a function of temperature. Second, the actual positions due to the superposition on the thermal stress field 
of the alternating shear stress associated with the pendulum oscillations are calculated by a perturbation method. 
Then the internal damping is derived from the contribution of the dislocation movements to the inelastic strain 
over a period of oscillation. The role of the experimental parameters is investigated. This simulated ID is 
compared with experimental results obtained in the case of aluminium-based MMCs. A good agreement between 
simulated and experimental IDs is found. 

1. Introduction 

During the cooling of various metal matrix composites 
(MMCs) a cooling-rate-dependent broad peak appears 
in the internal damping (ID) spectrum [1, 2]. In these 
experiments the ID has been characterized by the 
logarithmic decrement 8 of the freely decaying oscil- 
lations of a torsion pendulum of the inverted .type. The 
peak is not present when the cooling rate T is zero 
and then the ID spectrum is very similar to that observed 
for unreinforced materials, for which the internal damp- 
ing is generally cooling rate independent. The difference 
between the internal dampings measured at J '~0 and 
lh= 0 is hereafter denoted 8¢. At a given temperature 
8¢ increases with increasing cooling rate or increasing 
period of pendulum oscillations. In the range 10- 6-10 - s 
for the surface shear strain amplitude 8¢ decreases 
when the shear strain amplitude is increased. Finally, 
these phenomena appear stronger as the yield stress 
of the matrix becomes lower [1, 3]. 

These phenomena have been explained as follows 
[1, 2]: On cooling MMCs, dislocation loops are emitted 
to accommodate the thermal expansion mismatch be- 
tween particles and matrix. The cooling-rate-dependent 
ID 8¢ is attributed to the additional movements of 
these mobile dislocations induced by the alternating 

shear stress associated with the pendulum oscillations. 
However, a simple model based on a linear relationship 
between the inelastic strain and both the pendulum 
stress and the thermal strain mismatch is not able to 
describe all the details of the phenomena [2]. Therefore 
the aim of this paper is to present a more reliable 
model for this physical mechanism. After recalling some 
basic principles about ID, a model of punching out of 
the thermally emitted dislocation loops during the cool- 
ing of an MMC is briefly presented. A perturbation 
method is used to determine the dislocation loop po- 
sitions when a mechanical stress is superimposed on 
the thermal stress. Incorporating these concepts into 
the ID formulation enables us to compute the ID 
spectrum. Finally, the effects of the cooling rate and 
the frequency of oscillations on the thus computed ID 
are presented. 

2. Internal damping formulation 

The logarithmic decrement is related to the energy 
loss during an oscillation, AW, by the well-known relation 
8=AW/2W, where W is the maximal elastic energy 
stored in the sample during 1 cycle of oscillation. 
Furthermore, the general expression for AW is 
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 w=fff f trace(gr-d~p) dV 
V I cycle 

where V is the sample volume, & is the applied stress 
tensor and ~p is the plastic strain tensor induced by 
the applied and internal stress fields. For a parallel- 
epiped sample with a thickness very much smaller than 
its width and for a torque applied along the longitudinal 
axis of the sample, the general expression for the stress 
tensor [4] becomes very simple. The only non-zero term 
varies as the distance between the considered point 
and the symmetry plane parallel to the largest faces. 
Then the expressions for AW, W and 62 are 

Tmax 

Tma× 
0 1 cycle 

W =  g Tmax 2 (1) 
6 /x 

"rmax 

'rmax 3 
0 1 cycle 

where/z is the shear modulus, 'Tma x is the shear stress 
on the largest face of the sample and ~p is the shear 
strain rate induced by the thermal and mechanical 
stresses. Then the problem which is involved in any 
analytical or numerical calculation of the dissipated 
energy is to determine 5% Our approach is presented 
in the subsequent sections. 

3. Punching out of dislocation loop modelling 

To determine the positions of dislocation loops on 
cooling the MMC, we only consider the simplest sit- 
uation: a spherical particle in an infinite matrix initially 
free of stress [5]. In this model the thermally induced 
stress field around a particle, calculated by the Eshelby 
method [6], is partially relaxed by the emission of 
interstitial dislocation loops (a fraction of the geo- 
metrically necessary dislocations). For the sake of sim- 
plicity we represent the interactions of dislocations with 
obstacles opposing their motion by a local friction stress 
~-f, assumed to be independent of the dislocation velocity. 
Then dislocation loop emission occurs when the driving 
shear stress in the matrix near the particle-matrix 
interface, which is calculated by also taking into account 
the partial stress relaxation expected from the potentially 
emitted dislocation, is greater than ~-f. The radius of 
the circular loops is chosen in order to obtain equality 
between the Tresca shear stress in the matrix near the 
interface and the shear stress in the glide direction of 
the dislocation. After emission the loops glide far away 
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Fig. 1. Distance x ° of dislocation groups from particle-matrix 
interface vs. temperature on cooling a 7075 AI alloy/15 vol.% 
SiC composite (particle diameter 10 /zm) from 430 K (stress- 
free temperature). 

from the interface as long as the driving stress remains 
greater than the friction stress in the matrix. Residual 
stresses, image effects, dipolar interactions between 
loops and plastic incompatibilities are taken into account 
in the calculation of the driving stress. The evolutions 
of ~'f with the temperature and the local dislocation 
density are included in the model. In addition, note 
that to fulfil the spherical symmetry of the system, 12 
dislocation loops, which are assumed to be equally 
distributed among the various glide directions of the 
A1 matrix, are treated simultaneously by grouping and 
melting them in a somewhat equivalent spherical plastic 
shell [5]. Results obtained by the Hamann-Fougrres 
model [5] for a 7075 A1 alloy reinforced with 15 vol.% 
SiC particles are reported in Fig. 1, where the number 
of dislocation groups and their distances from the 
particle-matrix interface are plotted vs. temperature. 
From this figure two domains can be distinguished. 
First, during the beginning of cooling (temperature 
range 430-320 K) the matrix remains elastic. Second, 
on further decreasing the temperature, the yield stress 
of the matrix is exceeded. Then the punching out of 
dislocation groups occurs with a quasi-constant tem- 
perature decrement between successive events. 

4. Internal damping modelling 

When a periodic shear stress is applied during the 
temperature variation, the above-calculated dislocation 
displacements are modified. For the sake of simplicity 
let us describe the approach that we use to determine 
this perturbation with just one dislocation loop, a con- 
stant friction shear stress and a constant cooling rate. 
At a temperature T the relation between the driving 
shear stress F(x °, T) acting on the loop situated at x ° 
("thermal" position without applied shear stress) and 
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the friction shear stress is F(x °, T)= ~-f. When a me- 
chanical periodic shear stress is applied, the equality 
between the driving and friction shear stresses becomes 
so by F ( x  1, T)+~'sin(tot)=rt,  where x 1 is the actual 
position of the dislocation loop that is close t ox  °. Then 
a first-order expansion in the position variable and a 
time derivation enable us to express the difference 
between the actual and "thermal" dislocation velocities 
a s  

O2F OF 
IJ] s in(~)  ~ - t o  cos(tot) -~ 

In fact, this expression is only valid when the driving 
shear stress is higher than the friction stress or, equiv- 
alently, when the dislocation velocity is positive. Under 
the other circumstance the dislocation velocity is zero. 
In consideration of this remark, it appears that two 
regimes must be distinguished for the dislocation move- 
ments: 

(a) a continuous forward motion of the dislocation 
if ~1 >0  throughout the period of oscillation (regime 
"a");  

(b) a jerky movement of the dislocation if during 
the pendulum oscillation the driving shear stress be- 
comes lower than ~'t (regime "b").  

In the latter case the time lapse during which the 
dislocation movement occurs is deduced from the con- 
dition j / l>  0. Furthermore, the contribution of these 
dislocation movements to ~p is calculated from ;/1 in 
consideration of the following remarks. 

(i) The purely thermal displacement (term ~/o) does 
not contribute to any shear strain, because the cor- 
responding strain is of dilatational type. 

(ii) According to the glide direction and the Burgers 
vector orientation, the velocity of the various segments 
of a dislocation loop may be increased or moderated 
by the applied stress, thus leading to some shear strain 
(in regime " a "  the right-hand-side term of eqn. (2) is 
responsible for this shear strain, which tends to follow 
the applied stress with some phase shift due to the 
non-linearity of the mechanism, whereas in regime " b "  
the contribution of the dislocation displacement to the 
shear strain rate is also derived from ~/1 _$0, but in 
this case its expression is not always given by eqn. (2), 
since during the immobility time of the dislocation 
~1 _a~o = _¢o). 

(iii) For the sake of simplicity an average orientation 
factor for the various glide directions, estimated to be 
~, has been used instead of determining ~1 _$o and its 
contribution to 5'p for each direction of slip. 

(iv) Orowan's law can be applied over a cubic volume 
h a around the particle, where h is the mean distance 
between particles, to relate ~/l_a~o to 5'p for each dis- 
location loop: ~p = 27rp( : f1 -$°)b /h  3, where p is the loop 
radius. 

Finally, to get the 8~ value, a time integration over 
1 cycle (or the fraction of the cycle during which the 
velocity is positive) and a subsequent integration over 
the shear stress range, from the neutral fibre where 
the shear stress is zero to the specimen surface where 
it is maximal, have to be carried out. As initially 
mentioned, the above description of our approach has 
been given for a single group of emitted dislocations. 
For real calculations all the groups of dislocation loops 
(see Fig. 1) must be taken into account. Thus the 
driving shear stress must be considered as a function 
of all the dislocation loop positions in order to take 
the dipolar interactions and plastic incompatibilities 
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Fig. 2. Internal damping vs. absolute temperature for two cooling 
rates in 7075 AI aUoy/15 vol.% SiC composite with a pendulum 
period of 3.3 s, a maximal shear stress of 0.18 MPa and a cooling 
rate of (a) 100 and (b) 200 K h-X: solid curves, computed results 
for a particle diameter of 10 #m; solid squares, experimental 
data for a particle mean size of 10 /zm. 
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Fig. 3. Internal damping maximum vs. frequency; a, experimental 
data; b, computed results (same material and experimental con- 
ditions as for Fig. 2 but with a cooling rate of 100 K h-l). 
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into account. The thus computed variations in the 
internal damping ~- v s .  temperature are reported in 
Fig. 2 for two cooling rates. The experimental values 
measured under the same experimental conditions are 
represented by squares. It appears that the agreement 
between experimental and computed values is good. 
The shape of the curves is principally governed by two 
different mechanisms. First, the monotonic increase in 
~r observed with decreasing T below the temperature 
for which the first loop is emitted is due to a regular 
increase in the dislocation loop number (see Fig. 1). 
Second, the decrease in ~7- for the lowest temperature 
range results from the decrease in the dislocation 
mobility in this temperature range. The comparison of 
the height of the maximum of the ID spectrum v s .  the 
oscillation frequency for computed and experimental 
results also exhibits very good agreement as shown in 
Fig. 3. 

5. Conclusions 

The good agreement between experimental data and 
computed results for the cooling-rate-dependent ID in 
MMCs confirms the proposed interpretation. This phe- 

n o m e n o n  results from the additional displacements of 
the thermally emitted dislocation loops which are in- 
duced by the oscillations of the pendulum. 
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